🎧 Omi Python SDK

A pip-installable Python SDK for connecting to Omi wearable devices over Bluetooth, decoding Opus-encoded audio, and transcribing it in real time using Deepgram.

πŸ“¦ Installation

Prerequisites

The Omi SDK requires the Opus audio codec library to be installed on your system: macOS:
brew install opus
Ubuntu/Debian:
sudo apt-get install libopus0 libopus-dev
CentOS/RHEL/Fedora:
sudo yum install opus opus-devel  # CentOS/RHEL
sudo dnf install opus opus-devel  # Fedora

Option 1: Install from PyPI (when published)

pip install omi-sdk

Option 2: Install from source

git clone https://github.com/BasedHardware/omi.git
cd omi/sdks/python
pip install -e .

πŸš€ Quick Start

1. Set up your environment

# Get a free API key from https://deepgram.com
export DEEPGRAM_API_KEY=your_actual_deepgram_key

2. Find your Omi device

# Scan for nearby Bluetooth devices
omi-scan
Look for a device named β€œOmi” and copy its MAC address:
0. Omi [7F52EC55-50C9-D1B9-E8D7-19B83217C97D]

3. Use in your Python code

import asyncio
import os
from omi import listen_to_omi, OmiOpusDecoder, transcribe
from asyncio import Queue

# Configuration
OMI_MAC = "YOUR_OMI_MAC_ADDRESS_HERE"  # From omi-scan
OMI_CHAR_UUID = "19B10001-E8F2-537E-4F6C-D104768A1214"  # Standard Omi audio UUID
DEEPGRAM_API_KEY = os.getenv("DEEPGRAM_API_KEY")

async def main():
    audio_queue = Queue()
    decoder = OmiOpusDecoder()
    
    def handle_audio(sender, data):
        pcm_data = decoder.decode_packet(data)
        if pcm_data:
            audio_queue.put_nowait(pcm_data)
    
    def handle_transcript(transcript):
        # Custom transcript handling
        print(f"🎀 {transcript}")
        # Save to file, send to API, etc.
    
    # Start transcription and device connection
    await asyncio.gather(
        listen_to_omi(OMI_MAC, OMI_CHAR_UUID, handle_audio),
        transcribe(audio_queue, DEEPGRAM_API_KEY, on_transcript=handle_transcript)
    )

if __name__ == "__main__":
    asyncio.run(main())

4. Run the example

The included example demonstrates connecting to an Omi device and real-time transcription:
# 1. Set your Deepgram API key
export DEEPGRAM_API_KEY=your_actual_deepgram_key

# 2. Find your Omi device MAC address
omi-scan

# 3. Update examples/main.py with your device's MAC address
# Edit line 10: OMI_MAC = "YOUR_DEVICE_MAC_HERE"

# 4. Run the example
python examples/main.py
The example will:
  • Connect to your Omi device via Bluetooth
  • Decode incoming Opus audio packets to PCM
  • Transcribe audio in real-time using Deepgram
  • Print transcriptions to the console

πŸ“š API Reference

Core Functions

  • omi.print_devices() - Scan for Bluetooth devices
  • omi.listen_to_omi(mac, uuid, handler) - Connect to Omi device
  • omi.OmiOpusDecoder() - Decode Opus audio to PCM
  • omi.transcribe(queue, api_key) - Real-time transcription

Command Line Tools

  • omi-scan - Scan for nearby Bluetooth devices

πŸ”§ Development

Local development setup

git clone https://github.com/BasedHardware/omi.git
cd omi/sdks/python

# Create virtual environment
python3 -m venv venv
source venv/bin/activate

# Install in editable mode
pip install -e .

# Install dev dependencies
pip install -e ".[dev]"

🧩 Troubleshooting

  • Opus library error: Make sure Opus audio codec is installed (see Prerequisites section)
  • Bluetooth permission errors on macOS: Go to System Preferences β†’ Privacy & Security β†’ Bluetooth and grant access to Terminal and Python
  • Python version: Requires Python 3.10+
  • Omi device: Make sure device is powered on and nearby
  • WebSocket issues: SDK uses websockets>=11.0

πŸ“„ License

MIT License β€” this is an unofficial SDK built by the community, not affiliated with Omi.

πŸ™Œ Credits

Built by the Omi community using Omi hardware and Deepgram’s transcription engine.